Cursor Insert India

Data Analysis

Data Analysis

Data Analysis

Course Description

1. Introduction to Data Analysis

  • Overview of Data Analysis:
    • Importance of data in decision-making
    • Key steps in the data analysis process (data collection, cleaning, analysis, visualization, interpretation)
  • Types of Data:
    • Quantitative vs. Qualitative Data
    • Structured vs. Unstructured Data
  • Data Analysis Workflow:
    • Data Collection
    • Data Cleaning and Preprocessing
    • Exploratory Data Analysis (EDA)
    • Statistical Analysis
    • Data Visualization and Interpretation

2. Introduction to Data Analysis Tools

  • Programming Languages for Data Analysis:
    • Python (Pandas, NumPy, Matplotlib, Seaborn)
    • R (dplyr, ggplot2, tidyr)
  • Data Analysis Libraries and Frameworks:
    • Python libraries: Pandas, NumPy, Matplotlib, Seaborn
    • R packages: ggplot2, dplyr, tidyr, caret
    • Jupyter Notebooks and RStudio
  • Using Spreadsheets for Data Analysis:
    • Excel: Data manipulation, Pivot Tables, Charts
    • Google Sheets: Functions and Add-ons for analysis

3. Data Collection and Cleaning

  • Data Collection Methods:
    • Data Sources: Surveys, Web Scraping, APIs, Databases
    • Data Formats: CSV, Excel, JSON, SQL databases
  • Data Cleaning Techniques:
    • Handling Missing Values (imputation, deletion)
    • Removing Duplicates and Outliers
    • Data Transformation and Normalization
    • Handling Categorical Data (encoding, dummy variables)
  • Data Integration:
    • Merging, Joining, and Concatenating Data from Multiple Sources

4. Exploratory Data Analysis (EDA)

  • Descriptive Statistics:
    • Measures of Central Tendency (Mean, Median, Mode)
    • Measures of Dispersion (Range, Variance, Standard Deviation)
  • Data Visualization:
    • Visualizing Distributions (Histograms, Boxplots)
    • Visualizing Relationships (Scatter Plots, Heatmaps)
    • Correlation Analysis (Correlation Matrices, Pair Plots)
  • Exploring Data Trends and Patterns:
    • Identifying Trends, Patterns, and Relationships
    • Outlier Detection and Removal
    • Feature Engineering and Data Transformation

5. Statistical Analysis for Data Analysis

  • Probability Theory:
    • Probability distributions (Normal, Binomial, Poisson)
    • Conditional Probability
  • Hypothesis Testing:
    • Null and Alternative Hypotheses
    • t-tests, Chi-square tests, ANOVA
    • p-values, Significance Levels, and Confidence Intervals
  • Statistical Inference:
    • Confidence Intervals
    • Statistical Power and Type I/II Errors
  • Regression Analysis:
    • Linear Regression
    • Multiple Regression
    • Logistic Regression
  • Analysis of Variance (ANOVA):
    • One-way and Two-way ANOVA

6. Advanced Data Analysis Techniques

  • Time Series Analysis:
    • Introduction to Time Series Data
    • Trend Analysis and Smoothing Techniques
    • Forecasting with ARIMA and Exponential Smoothing
  • Classification and Clustering:
    • Supervised Learning: Decision Trees, k-Nearest Neighbors, Naive Bayes
    • Unsupervised Learning: K-Means Clustering, Hierarchical Clustering
  • Dimensionality Reduction:
    • Principal Component Analysis (PCA)
    • t-Distributed Stochastic Neighbor Embedding (t-SNE)
  • Data Mining Techniques:
    • Association Rule Mining
    • Market Basket Analysis

7. Data Visualization and Reporting

  • Creating Visualizations:
    • Data Visualization Principles (clarity, simplicity)
    • Using Python’s Matplotlib, Seaborn for advanced visualizations
    • Using R’s ggplot2 for complex visualizations
  • Dashboard Creation:
    • Creating interactive dashboards with Tableau, Power BI, or Plotly
    • Integrating Data Visualizations into Reports
  • Data Storytelling:
    • Communicating Data Insights Effectively
    • Creating Reports and Presentations for Stakeholders

8. Introduction to Big Data Analysis

  • Big Data Concepts:
    • Introduction to Big Data, Characteristics of Big Data (Volume, Velocity, Variety)
    • Technologies used in Big Data (Hadoop, Spark)
  • Data Handling and Processing:
    • Distributed Data Storage and Processing
    • Batch vs. Stream Processing
  • Big Data Tools:
    • Using PySpark for large-scale data analysis
    • Introduction to NoSQL Databases (MongoDB, Cassandra)

9. Machine Learning in Data Analysis

  • Supervised Learning:
    • Classification Algorithms: Random Forest, SVM, k-NN
    • Regression Algorithms: Linear and Logistic Regression
  • Unsupervised Learning:
    • Clustering Algorithms: K-Means, DBSCAN, Hierarchical Clustering
    • Dimensionality Reduction: PCA, t-SNE
  • Model Evaluation and Validation:
    • Cross-validation
    • Metrics for Regression: Mean Absolute Error, Mean Squared Error
    • Metrics for Classification: Accuracy, Precision, Recall, F1-Score

Course Syllabus

1. Introduction to Data Analysis

2. Introduction to Data Analysis Tools

3. Data Collection and Cleaning

4. Exploratory Data Analysis (EDA)

5. Statistical Analysis for Data Analysis

6. Advanced Data Analysis Techniques

7. Data Visualization and Reporting

8. Introduction to Big Data Analysis

9. Machine Learning in Data Analysis


Duration: 6 Months
(10 Reviews)
Share on:

Search box

Advertisements

Popup Image Offer
Admission Query

6 Months
Data Science
Data Processing and Visualization
(4.9 /10 Rating)
₹ 20000.00
  • Duration 6 Months
Data Science
Data Processing and Visualization
(4.9 /20 Rating)
  • 13 Lessons
  • 28 Students
View Details
3 Months
Data Science
Data Analytics Using Tableau
(4.9 /13 Rating)
₹ 15000.00
  • Duration 3 Months
Data Science
Data Analytics Using Tableau
(4.9 /2 Rating)
  • 13 Lessons
  • 28 Students
View Details